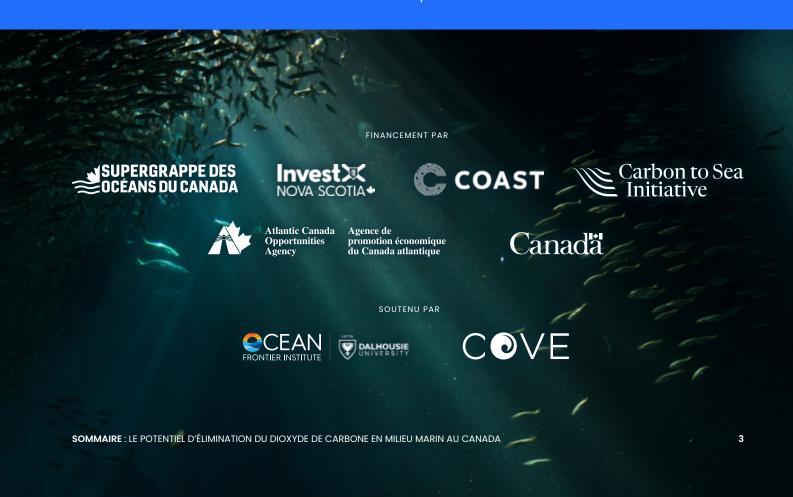

Le potentiel d'élimination du dioxyde de carbone en milieu marin au Canada Sommaire

Le potentiel d'élimination du dioxyde de carbone en milieu marin au Canada Introduction

Selon le Groupe d'experts intergouvernemental sur l'évolution du climat (GIEC), l'élimination du dioxyde de carbone (EDC) est une composante essentielle d'un avenir à long terme aligné sur le climat.

L'une des options de déploiement les plus prometteuses pour l'EDC, si elle est effectuée de manière sûre et efficace, se trouve dans les environnements marins qui présentent des avantages d'échelle naturels, un potentiel de croissance rapide, un manque de concurrence avec les activités terrestres et un vaste éventail d'avantages connexes.

Le niveau d'EDC requis pour atteindre les objectifs climatiques, tels que la limitation de la hausse de la température mondiale à 1,5 °C, est significatif. Les besoins mondiaux sont de l'ordre de 7 à 9 GtCO2/ an d'ici 2050. Un rapport récent de Carbon Removal Canada a suggéré une plage de 300 à 500 MtCO2/ an nécessaire d'ici 2050 pour que le Canada puisse parvenir à gérer ses émissions résiduelles. L'analyse présentée dans ce rapport, résumée ci-dessous,


montre une capacité potentielle de plus de 100 MtCO2/an pour l'industrie canadienne de l'EDC en milieu marin (EDCm) d'ici 2050; ce qui représente une contribution importante à ce besoin national.

Le Canada occupe une position unique pour poursuivre l'EDCm. Il possède des ressources naturelles abondantes, les plus longues côtes de tous les pays du monde, un accès aux océans Atlantique, Pacifique et Arctique, une longue histoire d'activités marines et une solide communauté de recherche, dont chacun serait un atout dans ses aspirations à déployer. Les deux provinces côtières de la Colombie-Britannique et de la Nouvelle-Écosse abritent déjà des entreprises d'EDCm, et toutes deux font preuve d'initiative pour accroître l'action climatique.

Aujourd'hui, les déploiements d'EDCm en sont pour la plupart encore à un stade pilote. Pour que le domaine d'EDCm réussisse et joue son rôle important dans le cadre de la solution climatique, il doit maintenant être incubé avec des déploiements dans le monde réel. Cela fait d'aujourd'hui un grand moment de possibilités pour l'EDCm avec les premiers dirigeants qui gagnent des occasions d'investissement ainsi que l'impact sur le climat.

Ce rapport ne se veut pas une évaluation exhaustive du potentiel de l'EDCm au Canada, une prévision de l'industrie future de l'EDCm au Canada ni une feuille de route pour la mise en œuvre de l'EDCm au Canada. Il est conçu en tant qu'évaluation des possibilités pour définir des aspirations et mettre en évidence des occasions d'amélioration et des avantages connexes disponibles.

Évaluation des possibilités économiques de l'industrie canadienne de l'EDCm

La possibilité de déployer l'EDCm au Canada provient de deux leviers : les objectifs environnementaux et la croissance économique.

L'EDCm présente un potentiel important de contribuer aux objectifs mondiaux du Canada en matière de climat. Comme le montre le Tableau ESI, ce rapport estime que l'EDCm a le potentiel d'éliminer de l'atmosphère environ 90 à 170 MtCO2/an d'ici 2050. Pour mettre ce chiffre en perspective, les émissions actuelles du Canada sont d'environ 700 MtCO2/an. Ce potentiel d'EDCm représente donc environ 1/6 des émissions actuelles du Canada.

De plus, une analyse récente entreprise par Carbon Removal Canada estime que le Canada aura besoin d'une capacité d'élimination du carbone d'au moins 300 Mt/an d'ici 2050 pour être conforme à l'objectif de 1,5 °C de l'Accord de Paris.¹ L'EDCm a le potentiel de contribuer à environ 40 % de ce besoin futur de capacité d'élimination. De plus, la plus récente soumission du Canada à la Convention-cadre des Nations Unies sur les changements climatiques (CCNUCC) pour les objectifs de contributions déterminées au niveau national (CDN) pour 2035 vise à réduire les émissions de 45 à 50 % en dessous des niveaux de 2005; ce qui exige environ 250 millions de tonnes/an de réductions.² Si les éliminations sont autorisées à être incluses dans les CDN à l'avenir, l'EDCm pourrait considérablement aider le Canada à contribuer à respecter ses engagements en matière de CDN.

Enfin, l'EDCm a également le potentiel de restaurer les milieux marins au Canada, par exemple en réduisant l'acidification de ses océans, en améliorant les habitats marins et en rehaussant la résilience côtière.

Évaluation des potentiels de déploiement

La méthodologie utilisée dans ce rapport pour déterminer les potentiels de déploiement futurs d'EDCm au Canada comportait quatre étapes clés :

1

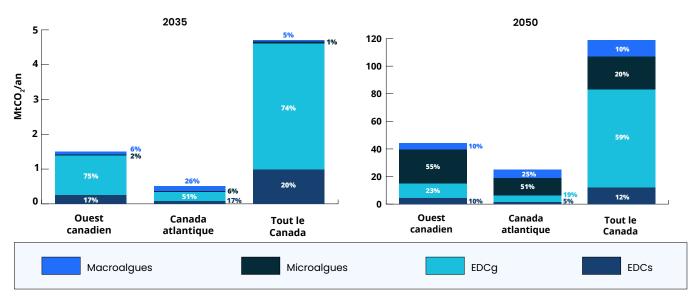
La sélection des approches d'EDCm 2

La
détermination
des facteurs
de contrainte
clés pour le
déploiement
de chaque
approche

3

L'étude des ressources disponibles pour chaque approche dans la région cible 4

La mise à l'échelle des hypothèses pour déterminer une voie pour le potentiel de déploiement

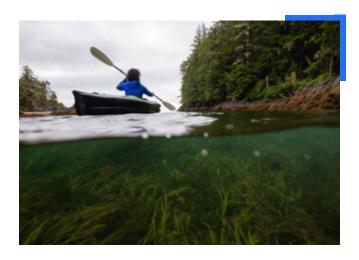

Les approches ont ensuite été divisées en trois catégories principales fondées sur les facteurs de contrainte clés :

- **EDC biogénique (EDCb)**: Ces approches impliquent de cultiver des macroalgues ou des microalgues dans l'océan et leur sédimentation. Leur principal facteur limitatif est l'étendue du littoral disponible. Les potentiels des macroalgues et des microalgues ont été modélisés séparément, car l'EDCm à base de microalgues est plus embryonnaire; elle a un grand potentiel d'échelle à l'avenir, mais seulement si les recherches en cours confirment son efficacité dans les prochaines années.
- **EDC géochimique (EDCg)**: Ces approches consistent à ajouter des roches alcalines (basiques) pour réagir avec le CO2 acide dans l'océan ou le long des côtes, réduisant ainsi l'acidité de l'océan et augmentant ainsi sa capacité à extraire le CO2 de l'atmosphère. Leur principal facteur limitatif est la disponibilité de charges minérales alcalines.
- **EDC synthétique (EDCs)** : Ces approches consistent à alimenter des machines pour extraire le CO2 ou l'acide de l'atmosphère en utilisant la capacité de l'eau de mer à absorber le CO2. Leur principal facteur limitatif est la disponibilité d'électricité à faible émission de carbone.

Tableau 1Potentiels de déploiement d'EDCm

		Ouest canadien		Canada atlantique		Tout le Canada
Valeurs en ktCO2/an		Regroupés	CB. uniquement	Regroupés	NÉ. uniquement	Regroupés
	2035	70 à 200	70 à 200	80 à 200	40 à 100	150 à 400
Macroalgues	2050	3 500 à 9 000	3 500 à 9 000	4 000 à 10 000	2 000 à 5 000	8 000 à 20 000
	2035	20 à 40	20 à 40	20 à 50	10 à 20	40 à 100
Microalgues	2050	7 000 à 17 000	7 000 à 17 000	8 000 à 20 000	4 000 à 9 000	16 000 à 40 000
	2035	1 000 à 1 500	500 à 700	200 à 300	100 à 150	3 000 à 4 000
EDCg	2050	20 000 à 30 000	8 000 à 13 000	4 000 à 6 000	2 000 à 3 000	60 000 à 90 000
FDQ.	2035	100 à 400	50 à 150	40 à 100	10 à 30	500 à 1 500
EDCs	2050	2 000 à 6 000	800 à 2 000	600 à 2 000	150 à 500	7 000 à 20 000
Total	2035	1 000 à 2000	600 à 1 000	300 à 700	150 à 300	3 500 à 6 000
	2050	30 000 à 60 000	20 000 à 40 000	15 000 à 40 000	7 000 à 15 000	90 000 à 170 000

Figure 1Potentiels de déploiement d'EDCm (valeurs moyennes)


Potentiels de déploiement

Comme le montrent le Tableau 1 et la Figure 1, les ressources naturelles importantes du Canada, le niveau actuel d'activité industrielle et l'ampleur de la production d'énergie propre offrent d'importantes possibilités de croissance dans l'industrie de l'EDCm au cours des prochaines décennies. D'ici 2050, le déploiement total pourrait dépasser 100 MtCO2/an d'élimination et jouer ainsi un rôle important dans la satisfaction des besoins du Canada en matière d'EDC.

Les potentiels de déploiement dans les provinces de la Colombie-Britannique (20 à 40 MtCO2/an d'ici 2050) et de la Nouvelle-Écosse (7 à 17 MtCO2/an) sont fondés sur leurs côtes ainsi que sur les prévisions de leur production de minéraux alcalins et d'électricité à faible teneur en carbone à l'intérieur de leurs frontières. La mesure dans laquelle les ressources pour ces procédés peuvent être importées d'autres provinces constitue une incertitude clé associée à ces potentiels. Le potentiel d'EDCg et d'EDCs en Nouvelle Écosse et en Colombie-Britannique pourrait être beaucoup plus élevé si on importait des minéraux et de l'énergie supplémentaires. Le potentiel modélisé utilisant des ressources provenant de l'Ouest et de la région Atlantique du Canada est également inclus au Tableau 1 et les calculs des impacts économiques qui suivent.

Potentiels régionaux

L'Ouest canadien présente un potentiel total plus important, influencé par la population plus grande de la région et l'étendue actuelle de l'activité industrielle. Toutefois, proportionnellement à sa taille, le Canada atlantique ne compte que 20 % de la population de l'Ouest canadien et génère un PIB aussi élevé de 15 %, et pourtant, son potentiel de PIB se situe à 30 % de celui de l'Ouest canadien d'ici 2035 et à plus de 50 % d'ici 2050. Cela signifie que le potentiel d'EDCm du Canada atlantique est plus de deux fois

plus important par rapport à sa taille, et que toute incidence, comme le PIB généré et la main-d'œuvre connexe, sera importante proportionnellement aux activités actuelles.

Répartition entre les catégories d'approche

Le potentiel total de « l'ensemble du Canada » à miparcours présenté à la Figure 1 montre un potentiel additionnel important d'EDCq comparativement à la somme des potentiels du Canada de l'Ouest et du Canada atlantique. Cela est attribuable au potentiel supplémentaire de déploiement d'EDCm qui pourrait être rendu possible par l'importation de matières premières extraites dans le centre du Canada si des réseaux de transport efficaces sont développés. Si les approches d'EDCm fondées sur les microalques, qui en sont actuellement aux premiers stades de développement et de validation scientifique, sont confirmées d'ici 2050, elles contribueront plus significativement au potentiel total d'ici 2050. Proportionnellement, cela aurait un impact particulièrement important pour le Canada atlantique.

Impact mondial significatif

L'industrie canadienne de l'EDCm pourrait jouer un rôle important dans le déploiement mondial. Comparativement aux travaux antérieurs de RMI sur les réussites de l'EDC à l'échelle mondiale totale d'ici 2050, les potentiels d'EDC du Canada décrits dans ce rapport représentent 5 à 10 % du total mondial. En particulier, la capacité de déploiement d'EDCg est significative en raison des vastes ressources minérales du Canada, avec des potentiels modélisés atteignant 15 à 20 % du déploiement mondial d'EDCm géochimique total d'ici 2050. Les estimations présentées ici montrent que, en supposant que les conditions gagnantes soient remplies, l'EDCm a un potentiel considérable au Canada et aiderait le pays à atteindre ses cibles de zéro émission tout en positionnant le Canada comme un chef de file précoce dans cette industrie en pleine croissance avec des avantages économiques potentiels importants.

Évaluation de l'impact économique

Potentiel économique important

L'EDCm peut également contribuer de façon significative aux perspectives de croissance économique du Canada par la création d'emplois, la croissance du PIB, l'investissement en capital et la transition de la main d'œuvre. Une industrie d'EDCm opérant à des échelles de dizaines de millions de tonnes de CO2 éliminées chaque année représenterait une nouvelle industrie maritime importante. Si des conditions gagnantes sont établies pour libérer ce potentiel, ce rapport estime que la nouvelle industrie créerait jusqu'à près de 100 000 emplois au Canada, contribuerait 7 à 20 milliards de dollars à son PIB total et générerait 50 à 140 millions de dollars en recettes fiscales fédérales et provinciales. En pourcentage du PIB total, cela représente jusqu'à 40 % de l'échelle actuelle de l'économie océanique du Canada.

Pour mettre en perspective les projections économiques de l'EDCm, le secteur canadien des services publics d'électricité emploie actuellement environ 100 000 personnes dans tout le pays, attire plus de 22 milliards de dollars en investissements en immobilisations et contribue pour 35 milliards de dollars au PIB du Canada; des chiffres semblables sont possibles pour l'EDCm d'ici 2050.

Impacts régionaux

D'un point de vue régional, les répercussions proportionnelles de cette industrie sur les provinces côtières sont importantes. D'après la répartition des ressources entre les provinces, y compris les croissances projetées par province dans la production d'électricité propre, 20 % du potentiel de déploiement de l'EDCm du Canada repose sur les ressources provenant du Canada atlantique. Selon la fraction des ressources régionales utilisées pour le déploiement en Nouvelle-Écosse comparativement aux provinces atlantiques voisines, cela représente d'ici 2050 la création de 4 000 à 22 000 emplois en Nouvelle-Écosse et une contribution de 0,6 à 4 milliards de dollars au PIB; ce qui représente 1,5 à 9 % du PIB actuel de la Nouvelle-Écosse). De même, avec l'accès à l'énergie et aux matières premières provenant de l'ensemble de l'Ouest canadien, la Colombie-Britannique pourrait bénéficier d'un impact de 28 milliards de dollars sur le PIB (0,7 à 3 % du PIB actuel de la Colombie-Britannique) et de la création de 11 000 à 35 000 emplois d'ici 2050.

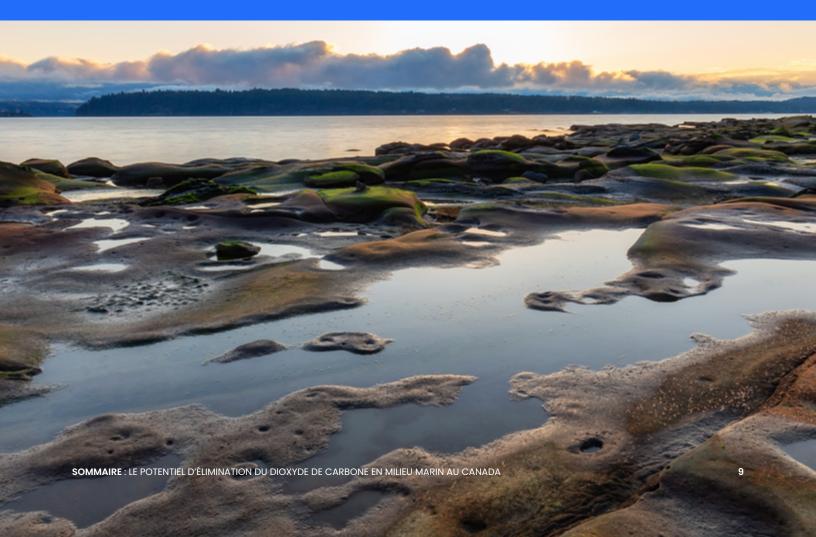

Il est à noter que des tableaux ventilant ces impacts économiques estimés selon les contributions des différentes catégories de l'approche d'EDC (macroalgues, microalgues, EDCg et EDCs) sont disponibles à l'annexe. Le déploiement de l'EDC selon différentes approches implique des activités industrielles et économiques distinctes et a été modélisé séparément. Pour plus de détails sur l'analyse présentée ici, voir l'annexe de la version détaillée de l'étude.

Tableau 2Besoins de financement d'investissement et d'exploitation dans toutes les approches d'EDCm à grande échelle

	Ouest canadien		Canada atlantique		Tout le Canada
\$M/an	Regroupés	CB. uniquement	Regroupés	NÉ. uniquement	Regroupés
2035	200 à 600	90 à 300	600 à 1 500	20 à 70	70 à 1 800
2050	4 000 à 13 000	2 500 à 7 500	2 500 à 7 000	1 000 à 3 000	12 000 à 36 000

Volume total du marché

Le besoin total d'investissement pour une industrie d'EDCm à grande échelle a été estimé à l'aide de données d'entrevue sur les coûts actuels d'investissement et d'exploitation des projets d'EDCm en combinaison avec l'analyse de la possibilité d'améliorations futures des coûts au rythme du déploiement des projets à grande échelle. Le coût estimatif du déploiement de l'EDCm au Canada est de 0,7 à 1,8 G\$ en 2035 et de 12 à 36 G\$ en 2050. La somme des coûts totaux présentée au Tableau 2 présente une estimation du volume total du marché du déploiement de l'EDCm si des crédits sont vendus à des prix près du coût du déploiement.

Main-d'œuvre

L'élimination de milliers de tonnes de CO2 chaque année d'ici 2035 et de plus de cent mille tonnes par année d'ici 2050 nécessitera une main-d'œuvre importante (résumée au Tableau 3) qui participera à des activités telles que l'extraction, la transformation, le transport et le déploiement des matières premières, l'exploitation d'usines synthétiques d'EDC, et l'aquaculture, la transformation et la sédimentation des alques. Ce rapport estime que l'industrie d'EDCm pourrait générer plus de 3 000 emplois d'ici 2035, et atteindre près de 100 000 emplois d'ici 2050. Le nombre total de personnes employées dans les provinces de la Colombie-Britannique et de la Nouvelle-Écosse est de 3 et 0,5 millions, respectivement; ce qui signifie que la main-d'œuvre totale équivalente à temps plein générée par l'industrie de l'EDCm à l'échelle pourrait représenter jusqu'à 1 % et 2 % des totaux actuels de l'emploi de la Colombie-Britannique et de la Nouvelle-Écosse. Ces estimations étaient fondées sur les données de sondage des entreprises de RMI sur l'intensité de la main-d'œuvre par unité de capacité de déploiement, combinées aux proportions d'emplois permanents et saisonniers dans des industries analogues. Les nouveaux emplois créés dans le cadre de

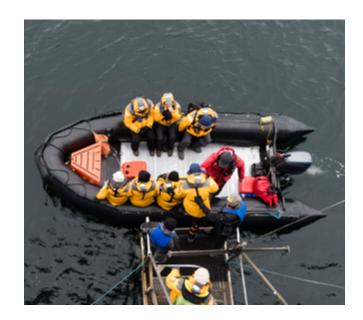

l'industrie d'EDCm d'ici 2050 comprennent une croissance quadruplée de la main-d'œuvre aquacole pour les projets d'EDCb basés sur la sédimentation de macroalques, avec une croissance encore plus importante prévue à la suite du déploiement à grande échelle des approches de sédimentation de microalgues si celles-ci se révèlent efficaces au cours de la prochaine décennie. L'expansion des activités d'exploitation de carrières de 50 % par rapport aux niveaux actuels, afin de fournir des matières premières pour les projets d'EDCg, générerait plus de 10 000 nouveaux emplois liés à l'extraction et à la transformation des matières premières, ainsi que jusqu'à 40 000 emplois liés au déploiement et aux opérations de projets auxiliaires. Les travailleurs actuels de l'industrie de la pêche au Canada, qui a connu une hausse du chômage de près de 30 % au cours des dernières années, seront probablement en mesure de se recycler dans ces industries. La construction et l'exploitation d'usines déployant des projets d'EDCs nécessiteront une main-d'œuvre équivalente à environ 5 % de la taille actuelle du bassin de main-d'œuvre des énergies renouvelables.

Tableau 3Besoins totaux en main-d'œuvre pour le déploiement d'EDCm à grande échelle

		Ouest canadien		Canada atlantique		Tout le Canada
		Regroupés	CB. uniquement	Regroupés	NÉ. uniquement	Regroupés
	2035	600 à 1 000	300 à 500	150 à 300	70 à 150	1 800 à 3 000
Temps plein	2050	15 000 à 27 000	8 000 à 17 000	7 000 à 15 000	3 000 à 7 000	40 000 à 75 000
Temps partiel	2035	200 à 300	100 à 200	60 à 100	30 à 60	600 à 900
	2050	6 000 à 12 000	4 000 à 9 000	4 000 à 9 000	2 000 à 4 000	16 000 à 31 000
ЕТР	2035	700 à 1 300	400 à 600	200 à 400	100 à 200	2 000 à 4 000
	2050	19 000 à 35 000	11 000 à 24 000	10 000 à 22 000	4 000 à 10 000	52 000 à 95 000

Prélèvements fiscaux

À grande échelle, une industrie d'EDCm d'un milliard de dollars générerait d'importantes recettes fiscales régionales et fédérales. En se fondant sur des comparaisons avec les prélèvements fiscaux par employé ou unité du PIB observées dans des industries analogues, l'analyse présentée au Tableau 4 montre que le total des prélèvements fiscaux, y compris les recettes d'impôt sur les sociétés et les recettes d'impôt sur le revenu générées par les recettes de l'EDCm, pourrait dépasser 100 millions de dollars d'ici 2050. Dans un premier temps, les prélèvements fiscaux de l'industrie resteront faibles, car le développement technologique précoce ne générera pas de profit, et les marchés porteurs tels que les marchés du carbone doivent continuer à se développer parallèlement aux technologies de l'EDCm. Dans d'autres industries liées aux technologies propres et au climat, les incitatifs fiscaux sont historiquement un outil de politique d'échelle critique. De tels allégements fiscaux réduiraient nécessairement les prélèvements fiscaux à court terme, mais ce faisant, cela apporterait la croissance accélérée d'une industrie vers une échelle imposable

plus importante à l'avenir. Les incitatifs fiscaux propres à l'exploitation ou à l'approvisionnement en ressources de certaines provinces influeront sur la proportion des impôts fédéraux et provinciaux.

Tableau 4Potentiels totaux de prélèvements fiscaux dans les approches d'EDCm à grande échelle

Ouest canadien			Canada atlantiqu	Tout le Canada	
\$M/an	Regroupés	C,-B, uniquement	Regroupés	N,-É, uni- quement	Regroupés
2035	0,7 à 2	0,4 à 1	0,2 à 0,6	0,1 à 0,3	2 à 6
2050	20 à 50	10 à 30	10 à 30	5 à 10	50 à 140

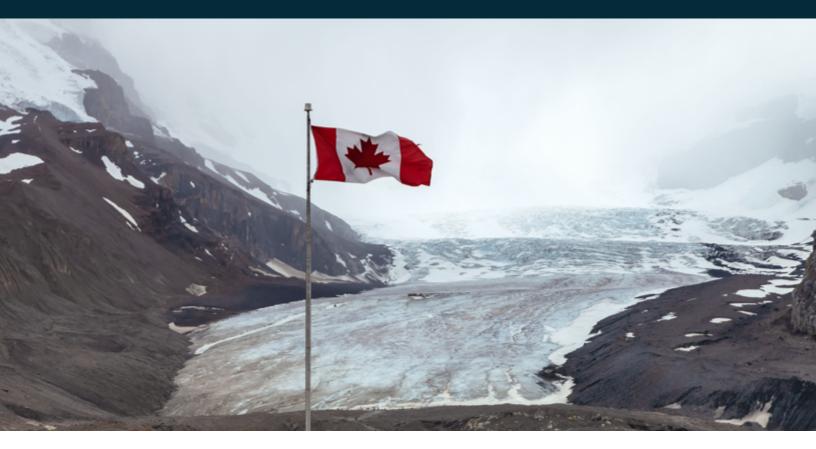
Contribution au PIB

Les activités liées à l'établissement et à l'exploitation d'une industrie d'EDCm à grande échelle, y compris les dépenses d'investissement, l'emploi et les recettes générées, devraient contribuer de manière significative au PIB national et régional. Les fourchettes estimées étaient fondées sur des comparaisons avec des industries analogues en termes de contributions au PIB par rapport à leur échelle mesurée par la taille totale de la maind'œuvre et l'investissement total en capital. Cette ampleur de déploiement ferait de l'EDCm une industrie canadienne importante, contribuant à un niveau de 0,3 à 1 % du PIB actuel du Canada, soit 2,3 billions de dollars, ou jusqu'à 50 % du PIB actuel de l'économie maritime du Canada, qui totalisait environ 50 milliards de dollars en 2023. Pour ce qui est du contexte régional, le PIB de la C.-B. et de la N.-É. était respectivement de 410 milliards de dollars et de 60 milliards de dollars en 2023 ; ce qui signifie que les répercussions sur le PIB d'une industrie d'EDCm à grande échelle utilisant des ressources provenant de ces provinces d'ici 2050 représentent 0,3 % du PIB actuel de la C.-B. et 1 % à 3 % pour la N.-É.

Tableau 5Potentiels d'impact sur le PIB total selon les approches d'EDCm à grande échelle

	Ouest canadien		Canada atlantiqu	Tout le Canada	
\$M	Regroupés	CB. uniquement	Regroupés	NÉ. uniquement	Regroupés
2035	100 à 300	50 à 150	30 à 80	10 à 40	300 à 900
2050	2 500 à 7 500	1 500 à 5 000	1500 à 4000	600 à 2 000	7 000 à 20 000

Retour sur investissement


Il est difficile de modéliser quantitativement le taux de rendement attendu de l'investissement total résumé au Tableau 2 à ce stade précoce en l'absence d'entreprises d'EDCm qui ont atteint une échelle commerciale ou dans les cas où la technologie s'est avérée sécuritaire, évolutive, mesurable et bancable. Les évaluations dans d'autres secteurs des technologies propres ont montré des taux de rendement moyens près de 8 %, avec des fluctuations importantes à mesure que différentes industries ont connu des périodes de stagnation ou de succès. Certaines technologies sous-jacentes à l'EDCm, en particulier les approches EDCq et EDCb, sont physiquement assez simples par rapport à d'autres technologies propres. Ce ne sont pas des processus techniques complexes. Le potentiel de déploiement commercial dépend en grande partie de la demande et des politiques publiques.

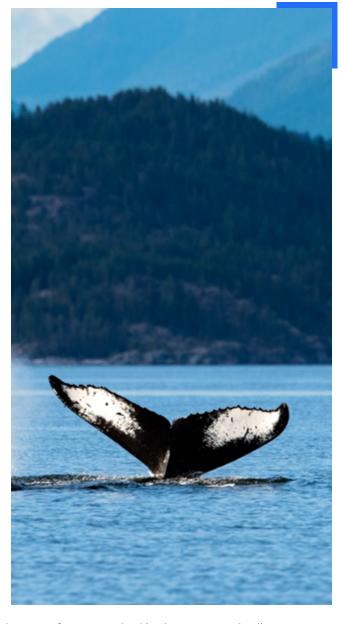
Incidences sur les industries auxiliaires

Une industrie d'EDCm d'un milliard de dollars serait importante non seulement en termes d'impacts économiques directs des revenus aénérés et de l'emploi, mais aussi en termes de production et de transport des matériaux. Les impacts attendus sur les industries auxiliaires comprennent la génération d'une nouvelle demande de matériaux et d'infrastructures, comme les matières premières minérales, les capteurs et les solutions de surveillance de l'impact environnemental, les membranes et les matières premières pour les procédés d'EDCs, le transport ferroviaire et par barges, et l'infrastructure de transport maritime pour les déploiements. De nombreuses approches d'EDC, en particulier les approches d'EDCs, nécessiteront la fourniture d'une quantité importante d'électricité à faible émission de carbone. Cela peut créer une demande stable et dissuader le développement de projets de production d'énergie renouvelable et de transport par réseau, mais cela présente également un risque de concurrence avec d'autres demandes d'électricité à faible intensité de carbone. Il sera essentiel de planifier à long terme les déploiements de nouvelles générations et l'attribution de l'électricité entre les régions. Les efforts continus et croissants pour la production d'électricité renouvelable additionnelle, comme les plans de projets d'éoliennes en mer en Nouvelle-Écosse, contribueront grandement au potentiel régional d'EDCs.

Leadership mondial

Le Canada est en bonne position pour devenir un des premiers chefs de file mondiaux en matière d'EDCm. Cela lui apporte la possibilité d'exporter non seulement des matières premières et des ressources utilisées pour le déploiement de la technologie d'EDCm dans d'autres régions, mais aussi l'expertise impliquée dans le développement de la technologie d'EDCm, la planification de projets et le suivi de l'impact. La force du Canada dans la recherche, dont universitaire, par l'ingénierie de nouvelles technologies, le place dans une position privilégiée pour cultiver les travaux sur les impacts de l'EDCm, y compris la modélisation et la surveillance des systèmes ouverts. Le soutien aux travaux dans ce domaine pourrait faire du Canada un chef de file mondial dans les aspects scientifiques et techniques de l'EDCm, l'exportation de l'expertise de projet, des technologies de capteurs et de déploiement, et de l'équipement physique à mesure que des solutions de mesure, rapport et vérification (MRV) du carbone pour les approches de l'EDCm sont élaborées et normalisées.

Possibilités d'engagement communautaire et de partenariats


Enfin, et ce qui est crucial, le développement rapide d'une nouvelle industrie aura des répercussions variées sur les collectivités partout au Canada, y compris les personnes qui participent à la main d'œuvre de l'EDCm, les collectivités côtières dont les zones et les écosystèmes locaux sont touchés par le déploiement du projet, et les collectivités autochtones dont les territoires, les liens culturels et les connaissances s'étendent à travers les paysages côtiers du Canada. Un engagement communautaire bilatéral efficace, y compris le partenariat et la copropriété dans le déploiement du projet, est un élément essentiel du déploiement responsable de l'EDC. Une industrie d'EDCm à grande échelle nécessitera un grand nombre de projets uniques dans leur géographie, des détails du projet, des écosystèmes locaux, et chacun nécessitera un engagement proactif et inclusif avec diverses communautés locales et la participation de celles-ci.

Avantages régionaux du Canada pour l'EDCm

Les côtes développées du Canada et les industries maritimes actives sont des avantages clés qui positionnent le pays en tant qu'hôte idéal pour l'industrie naissante d'EDCm.

Ses deux provinces côtières les plus peuplées, la Colombie-Britannique et la Nouvelle-Écosse, possèdent la majorité des côtes développées et accessibles. Ensemble, les deux provinces représentent plus de 38 000 km de côtes, soit environ un sixième du total du pays.

Les deux provinces sont bien adaptées au développement des économies océaniques. La masse terrestre de la Nouvelle-Écosse ne s'étend jamais à plus de 70 km de l'océan Atlantique, et la province s'est engagée à développer de l'énergie propre et à réduire les émissions, comme en témoignent ses plans de développement important de l'énergie éolienne en mer et ses engagements à fournir plus de 75 % de toute l'énergie à partir de sources renouvelables d'ici 2030. La Colombie-Britannique représente environ la moitié des activités de pêche commerciale du Canada dans le cadre du plus grand secteur maritime du pays, avec une production totale de 4 milliards de dollars, et a également des objectifs climatiques ambitieux, prévoyant réduire ses émissions globales de 40 % d'ici l'an 2030.

La Nouvelle-Écosse et la Colombie-Britannique sont déjà des carrefours pour le développement de diverses technologies d'EDC, y compris des entreprises d'EDCm et leurs projets pilotes. Ces provinces abritent une multitude d'organisations universitaires, sans but lucratif et gouvernementales axées sur le développement et la mise à l'échelle de la technologie marine. Ils hébergent déjà les réseaux régionaux et les infrastructures nécessaires pour soutenir le développement accéléré de technologies climatiques essentielles comme l'EDCm. La politique actuelle de gestion et de tarification du carbone soutient la demande initiale de crédits d'élimination pour les entreprises qui poursuivent leur déploiement dans les eaux canadiennes.

En tirant parti de ces avantages et en soutenant les conditions gagnantes nécessaires au développement de l'industrie, les provinces seront bien placées pour diriger le déploiement mondial des technologies de l'EDCm.

Conditions gagnantes pour le déploiement d'une industrie d'EDCm à grande échelle

Bien qu'il existe un potentiel important pour l'EDCm d'offrir des avantages environnementaux et économiques aux provinces côtières et au Canada en tant que nation, un vaste éventail de conditions sociales, techniques, réglementaires et financières gagnantes doivent être priorisées pour réussir un déploiement à grande échelle.

Les potentiels d'élimination et les impacts économiques identifiés dans cette étude dépendent fortement d'une variété de politiques et de mesures pratiques. La plupart de ces conditions et de ces défis sont bien connus dans l'industrie de l'EDC, mais ils se sont avérés difficiles à surmonter. À cette fin, la discussion qui suit vise à mettre en évidence ces conditions dans le contexte des provinces canadiennes et à fournir des recommandations sur la façon de les débloquer.

Afin de mettre en évidence les conditions les plus importantes que le Canada doit remplir pour atteindre une croissance importante et des absorptions à grande échelle des approches d'EDC en milieu marin, le Tableau 6 décrit les mesures les plus cruciales pour que l'industrie prospère, tant d'ici 2035 qu'en 2050, dans les trois catégories d'EDCm.

Tableau 6Conditions à court et à long terme pour une industrie d'EDCm à grande échelle au Canada

Approche EDC en milieu marin	Conditions gagnantes de 2035	Conditions gagnantes de 2050
Dans toutes les approches en milieu marin	 La science sous-jacente aux impacts et aux avantages connexes est clarifiée, créant ainsi des parcours clairs Des marchés publics spécifiques et évolutifs pour l'EDC en milieu marin ont été établis Les premiers projets pilotes d'EDCm donnent la priorité à la collaboration et à l'approche de la socialisation avec les populations côtières et les peuples autochtones 	 Les niveaux de référence obligatoires pour l'achat par le gouvernement de crédits d'EDCm ont été légiférés à l'échelle nationale Diverses approches d'EDCm fonctionnent avec le soutien de la communauté en utilisant un éventail diversifié de modèles de propriété La compétence pour permettre le déploiement de diverses approches est centralisée et rationalisée
EDCg	 Des partenariats avec les industries commerciales et les fournisseurs de matières premières ont été établis pour utiliser l'infrastructure actuelle Des impacts du déploiement côtier sur les écosystèmes et la durabilité des absorptions en système ouvert sont confirmés par des essais de haute efficacité Des réseaux de transport (chemins de fer et barges) ont été établis pour réduire le coût des matières premières et l'intensité des émissions Les sites de déploiement idéaux sont caractérisés en fonction de la profondeur, de la température et des courants de marée L'autorisation d'immersion en mer d'engrais à base de microglaues et de sédimentation de biomasse 	La croissance de l'industrie crée une demande d'investissement dans les infrastructures portuaires spécialement conçues pour les approches EDCg Les opérations d'exploitation de carrières côtières destinées à répondre à la demande des installations d'EDCg sont mises en place. Le gouvernement du Canada a invité d'autres pays à établir des lignes directrices sur la génération de crédit, la gestion environnementale et le déploiement dans les eaux internationales. Des banques de semences d'espèces idéales pour les approches d'EDCb sont établies pour une sécurité à long terme L'efficacité du déploiement en pleine mer et la durabilité de l'élimination sont clarifiées par les
EDCb	de microalgues et de sédimentation de biomasse est clarifiée avec ECCC et le MPO • Les coproduits dérivés de la biomasse produisent des sources de revenus pour assurer une stabilité financière précoce	durabilité de l'élimination sont clarifiées par les premiers pilotes et les premières démonstrations • Les infrastructures, sous la forme de flottes équipées de la technologie pour l'ensemencement et le déploiement et les usines de transformation côtières, sont établies dans la zone idéale de déploiement aux côtés des industries qui utilisent des sous-produits
EDCs	 ECCC, le MPO et l'industrie ont collaboré pour s'attaquer aux barrières de déversement en milieu marin du pH afin de maximiser l'efficacité de l'élimination et la consommation d'énergie. La construction à partir d'une grande variété de sources d'énergie à faible coût et à faible émission de carbone est prioritaire dans les provinces côtières Des programmes de formation précoce de la main-d'œuvre sont mobilisés pour éviter les goulets d'étranglement dans l'expansion de la mégatonne 	L'EDC en milieu marin synthétique atteint une demande suffisante pour justifier la mise en place de chaînes d'approvisionnement critiques Les impacts à long terme des augmentations localisées du pH sont compris pour éviter les impacts négatifs sur les écosystèmes et les centres de population. Les projets sont co-implantés avec des partenaires industriels intéressés par les sous-produits d'EDCM synthétique, y compris l'hydrogène vert et la décontamination par dessalement

Conditions gagnantes transversales et recommandations

Le Canada possède déjà des conditions législatives et géographiques qui sont particulièrement adaptées pour favoriser une industrie percutante de l'EDC en milieu marin. Il a donc le potentiel de jouer un rôle de chef de file mondial dans la résolution des défis les plus critiques que l'EDCm et, plus largement, l'industrie de l'EDC doivent surmonter pour atteindre une ampleur percutante d'ici le milieu du siècle. En tirant parti d'un système favorable de mécanismes et de politiques de gestion du carbone, ainsi que de son solide écosystème de recherche universitaire et de son réseau d'ONG qui appuient le développement de l'EDC, le Canada peut satisfaire les conditions gagnantes suivantes et produire des impacts économiques et environnementaux significatifs grâce à l'EDCm avant 2050.

Indices de référence à court terme (2025-2035)

D'ici 2035, l'étape la plus critique pour débloquer la monétisation de l'EDCm, clarifier les besoins de la chaîne d'approvisionnement et créer des structures efficaces, consistera à prouver l'efficacité des approches de l'EDCm. Cela nécessite un financement adéquat pour la recherche fondamentale ainsi que des installations pilotes et de démonstration pour étudier les impacts à long terme, les avantages connexes et la sécurité dans un éventail de conditions locales. Le partage ouvert de données avec l'industrie et les collectivités favorisera le partage des apprentissages et permettra aux promoteurs de projets d'ajuster les approches pour anticiper et atténuer les risques.

L'établissement de fonds d'approvisionnement gouvernementaux spécifiques pour l'EDCm et la modification des politiques actuelles de gestion du carbone pour inclure l'EDC soutiendraient également la croissance de l'industrie. Le Canada est déjà le premier pays à allouer des fonds nationaux pour l'achat de parcours d'EDC, et cette initiative doit continuer à prendre de l'ampleur et inclure l'EDCm afin de créer une demande stable. Ce faisant, le gouvernement du Canada peut établir une demande de référence pour l'EDC, atténuer des risques à l'échelle de l'industrie et réduire l'incertitude quant au financement à long terme pour les entreprises en démarrage et les opérations ayant des dépenses d'investissement et des coûts initiaux élevés. Le Canada peut également encourager le soutien de l'industrie privée à l'EDC, y compris l'EDCm en intégrant des crédits d'EDC dans le système national d'échange de droits d'émission de carbone du Canada. Le système actuel de tarification fondé sur

le rendement (STFR) fixe un prix croissant pour les émissions de carbone par tonne, qui atteindra 170 \$/ tonne d'ici 2030. En intégrant l'EDC comme moyen de compléter un pourcentage de ces paiements directs du STFR, le secteur privé contribuerait à la demande d'EDC. À mesure que les progrès technologiques et les coûts de l'EDC deviendront concurrentiels par rapport au prix de 170 \$/tonne de 2030 par jour, les entreprises seraient financièrement motivées à acheter des crédits.

Enfin, les premiers projets pilotes canadiens d'EDCm peuvent et doivent prioriser l'engagement et la collaboration avec les communautés côtières, y compris les communautés autochtones, afin d'assurer un succès à long terme et une acceptation sociale continue. En Nouvelle-Écosse, l'engagement auprès des collectivités des Premières Nations, comme les 13 Premières Nations mi'kmaq, est maintenant obligatoire pour toutes les activités qui ont une incidence sur leurs terres.3 En Colombie-Britannique, les Premières Nations joueront un rôle clé dans l'accélération du déploiement et la création d'un projet fonctionnant de manière autonome. Cela signifie l'adoption de nouveaux modèles novateurs de gouvernance de projet qui intègrent la prise de décision communautaire tôt dans la planification du projet et encouragent la copropriété. Des accords devraient créer des structures qui partagent les avantages du projet et socialisent la science, la nécessité et le risque liés aux déploiements d'EDCm avec les populations côtières grâce à l'éducation précoce et à la collaboration.

Indices de référence à long terme (2035-2050)

Les exigences à long terme pour l'intensification de l'EDCm et le succès de l'ensemble de l'EDC au Canada s'appuient sur les réalisations à court terme nécessaires décrites ci-dessus. Elles suivent les mêmes thèmes que la monétisation, le développement de la chaîne d'approvisionnement, la participation communautaire et la clarté réglementaire.

D'ici 2050, le gouvernement canadien doit jouer un rôle dans l'achat de crédits de carbone directement auprès de l'industrie. Cela nécessitera une législation sur les achats obligatoires aux niveaux fédéral et provincial, qui établira des niveaux de référence pour les achats gouvernementaux d'EDC en fonction des émissions résiduelles nationales. Le gouvernement national du Canada devrait légiférer pour que les émissions résultant des activités gouvernementales, y compris la fabrication et la construction, soient compensées par des achats effectués directement auprès des fournisseurs d'EDC, créant ainsi une demande anticipée qui complétera les investissements privés actuels et stimulera la croissance. La loi devrait également encourager les achats de crédits auprès des gouvernements provinciaux qui dépassent la norme nationale.

En plus d'une demande soutenue et constante, l'EDCm dans une variété de parcours devra fonctionner avec l'appropriation communautaire et être promu par les défenseurs locaux. D'ici 2050, des projets doivent viser à utiliser un éventail diversifié de modèles de propriété qui donnent la priorité à l'autonomie communautaire et au pouvoir décisionnel. Cela inclut de fournir aux communautés côtières et aux peuples autochtones dans les points

névralgiques de l'EDCm des ressources et des formations pour aider ou diriger le déploiement de projets. Les partenariats industrie-communauté qui favorisent l'octroi de licences technologiques, le partage des revenus et la codétermination des emplacements d'implantation créeront un soutien fondamental pour l'industrie.

La clarté réglementaire est essentielle pour permettre l'accélération du déploiement responsable d'EDCm. Le pouvoir de permettre le déploiement de diverses approches pourrait devoir être centralisé entre les organismes provinciaux et nationaux. La clarification des juridictions réglementaires réduit les délais de livraison et l'utilisation excessive de ressources pour les entreprises d'EDCm et garantit qu'elles puissent être évaluées et intégrées rapidement dans les règlements actuels au rythme d'arrivée de nouveaux apprentissages et de nouvelles technologies et découvertes scientifiques.

Enfin, pour éviter les goulets d'étranglement à grande échelle d'ici le milieu du siècle et pour atténuer les répercussions potentiellement négatives du déploiement près des côtes, le gouvernement du Canada devrait donner la priorité à l'engagement avec d'autres pays en ce qui concerne le déploiement dans les eaux internationales. Une industrie d'EDCm à grande échelle peut identifier des emplacements idéaux qui nécessitent des projets inclus pour s'étendre à des juridictions internationales et partagées. Des accords et des directives sur le suivi des projets, la création de crédits et la remise en état et la gestion de l'environnement seront nécessaires.

Conditions gagnantes et recommandations spécifiques à l'approche

En plus des conditions gagnantes qui doivent être satisfaites dans le domaine de l'EDC en milieu marin souligné ci-dessus, les industries de l'EDC synthétique, biogénique et géochimique doivent chacune atteindre un ensemble de conditions spécifiques au domaine pour obtenir des éliminations à grande échelle.

Pour l'EDCm biogénique, le succès nécessitera la caractérisation des sites de déploiement idéaux, la validation de la durabilité de l'élimination et la valorisation des sous-produits de la biomasse. Les décisions relatives au choix du site sont cruciales, car elles sont un facteur clé pour minimiser les dommages environnementaux potentiels liés au déploiement. Pour obtenir un financement à long terme, la validation de la durabilité de l'élimination est également une condition nécessaire pour attirer les investissements nécessaires pour faire évoluer l'industrie vers un déploiement mégatonal. Enfin, les entreprises de l'EDCb devraient donner la priorité à la création de sources de revenus alternatives qui utilisent la biomasse cultivée pour la production d'engrais pour sols, de biostimulants et d'aliments pour animaux agricoles, car cela peut favoriser l'expansion à court terme. En priorisant ces trois actions, les entreprises d'EDCm biogénique peuvent ainsi créer un parcours vers un déploiement à grande échelle, reconnaissant que le succès dépend en fin de compte de la qualité de l'élimination, de la durabilité et du financement adéquat.

Pour ce qui est de l'EDCm géochimique, le succès exigera une collaboration précoce avec les industries côtières et les fournisseurs de matières premières, une clarté sur les impacts globaux des dépôts côtiers sur les écosystèmes marins et la mise en place de réseaux de transport à faible émission de carbone pour les matières premières. Les entreprises en démarrage et en expansion devront s'associer avec des entreprises minières et des carrières pour obtenir des matières premières adéquates pour les pilotes et les installations de démonstration. L'utilisation des infrastructures côtières actuelles, v compris les transports maritimes et les pêches, sera nécessaire pour accroître la viabilité du déploiement précoce et réduire les dépenses d'investissement globales. Au fur et à mesure que des moyens adéquats de déploiement sont obtenus, l'industrie et les universitaires devraient collaborer avec les organismes gouvernementaux (p. ex. ECCC, MPO) pour aborder les risques et créer des structures autour du dépôt de matières alcalines dans les milieux marins afin de permettre aux projets de progresser au rythme des achats de matériaux et des méthodes de déploiement. Pour que les projets puissent continuer à s'assurer des matières premières et fonctionner selon des bilans carbone

nets négatifs, les approches de l'EDCg devront créer des corridors de transport à faible émission de carbone. Le transport se fera principalement par des systèmes ferroviaires et de barges, qui facilitent le mouvement de grandes quantités de matières premières alcalines à faible coût, tant du point de vue financier que des émissions.

Enfin, pour ce qui est de l'EDCm synthétique, le succès exigera un développement important des infrastructures énergétiques à faible émission de carbone, la mise en place de permis acceptables pour les processus dEDCs et la création de chaînes d'approvisionnement spécifiques à l'approche. Le développement de nouvelles énergies solaires, nucléaires et éoliennes, ainsi que l'intensification des infrastructures de transport qui en découle, seront essentiels pour la mise à l'échelle des technologies d'EDCs à forte intensité énergétique. Une telle intensification de l'électricité est également nécessaire pour s'assurer que la demande d'EDCs ne concurrence pas la décarbonisation résidentielle, commerciale et industrielle. La clarté des permis est également nécessaire pour s'assurer que les opérations ne sont pas tenues de rééquilibrer leur effluent basique (pH élevé). Le processus de rééquilibrage pour respecter les limites de pH actuelles entraîne une augmentation de la consommation de matériaux et d'énergie et réduit les taux d'élimination. Enfin, pour réduire les coûts associés à la consommation d'énergie et à l'efficacité technologique à un minimum, les entreprises d'EDCs et les industries manufacturières devraient s'efforcer d'établir de nouvelles chaînes d'approvisionnement et de nouveaux produits. Ceci est particulièrement important pour la technologie de membrane spécialisée qui permettra une construction à plus grande échelle et une efficacité d'élimination de meilleure qualité.

Pour les trois approches discutées ci-dessus, une discussion approfondie sur des conditions gagnantes supplémentaires, ainsi que des recommandations sur la façon d'atteindre celles décrites ici. Bien que le respect de ces conditions ne garantisse pas une intensification, ces conditions répondent aux exigences de base qui devront être satisfaites pour donner à chaque approche les meilleures chances de succès avant le milieu du siècle. La discussion plus exhaustive de la rapport vise à appuyer et à justifier, de manière plus détaillée, l'importance des conditions susmentionnées pour chacune des trois catégories d'approches efficaces à mettre à l'échelle.

Liste des acronymes

EDC

Élimination du dioxyde de carbone

EDCm

EDC en milieu marin

EDCb

EDC biogénique

EDCg

EDC géochimique

EDCs

EDC synthétique

MAE/OAE

Amélioration de l'alcalinité minérale/océanique

DOC

Capture directe de l'océan

EAP

Production d'alcalinité électrochimique, également connue sous le nom d'OAE électrochimique

DAC

Capture aérienne directe, type d'EDCs qui peut être déployé sur la côte ou à l'intérieur des terres

CSC: Capture et stockage du carbone

KtCO2

kilotonne, soit mille tonnes métriques, de CO2. 1 kt équivaut à 1 000 000 kg.

MtCO₂

mégatonne soit un million de tonnes métriques, de CO2.1 Mt équivaut à 1 000 kt.

GtCO2

Gigatonne, soit un milliard de tonnes métriques, de CO2. 1 Gt équivaut à 1 000 t.

\$

Toutes les valeurs en dollars de ce rapport représentent les dollars canadiens, sauf indication contraire.

GIEC

Groupe d'experts intergouvernemental sur l'évolution du climat

REC

Régie de l'énergie du Canada

MPO

Pêches et Océans Canada

ECCC

Environnement et Changement climatique Canada

NASEM

Académies nationales des sciences, de l'ingénierie et de la médecine des États Unis

Notes de fin de texte

- Carbon Removal Canada, Ready for Removal: A Decisive Decade for Canadian Leadership in Carbon Dioxide Removal (Prêt pour l'élimination : une décennie décisive pour le leadership canadien dans l'élimination du dioxyde de carbone) (2023), https://carbonremoval.ca/wp-content/uploads/2023/11/CRC_ResearchReport_ReadyForRemoval.pdf
- 2 Canada's Nationally Determined Contribution (Contribution déterminée au niveau national du Canada). https://unfccc.int/sites/default/files/2025-02/Canada%27s%202035%20Nationally%20Determined%20Contribution_ENc.pdf
- 3 The Confederacy of Mainland Mi'kmaq. (n.d.). About. https://cmmns.com/about/

CONTRIBUTEURS DE RMI

Rudy Kahsar | Annina Sartor | Eli Weaver | François de Rochette | Gloria See | Isabel Wood | Kunal Khandelwal

